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1 Red Black Tree

1.1 Red Black Tree

A red black tree is a binary search tree in which each node has a color (red or black) associated
with it (in addition to its key and left and right children) and the following 3 properties hold:

1. (root property) The root of the red black tree is black

2. (red property) The children of a red node are black

3. (black property) For each node with at least one null child, the number of black nodes on
the path from the root to the null child is the same

1.2 Time Complexity

Function Amortized Worst Case
Search O(logn) O(logn)
Insert O(1) O(logn)
Delete O(1) O(logn)

2 Completely Fair Scheduler

2.1 Completely Fair Scheduler

Completely fair scheduler is a process scheduler implemented based on per CPU run queues,
whose nodes are time ordered schedulable entities that are kept sorted by red black trees.

2.2 Algorithm

Each per CPU run queue sorts schedulable entity in a time ordered fashion into a red black tree,
where the leftmost node is occupied by the entity that has received the least slice of execution
time. The nodes are indexed by processor execution time in nanoseconds.

A maximum execution time is also calculated for each process to represent the time the process
would have expected to run on an ideal processor. This is the time the process has been waiting
to run, divided by the total number of process.
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Figure 1: An example of a red-black tree

When the scheduler is invoked to run a new process:

1. The leftmost node of the scheduling tree is chosen (as it will have the lowest spent execution
time), and sent for execution.

2. If the process simply completes execution, it is removed from the system and scheduling
tree.

3. If the process reaches its maximum execution time or is otherwise stopped (voluntarily or
via interrupt) it is reinserted into the scheduling tree based on its newly spent execution
time.

4. The new leftmost node will then be selected from the tree, repeating the iteration.

3 Linux

3.1 An overview of CFS

The main idea behind the CFS is to maintain balance (fairness) in providing processor time
to tasks. To determine the balance, the CFS maintains the amount of time provided to a given
task in what’s called the virtual runtime.

Rather than maintain the tasks in a run queue, as has been done in prior Linux schedulers,
the CFS maintains a time ordered red black tree.

With tasks (represented by sched entity objects) stored in the time ordered red black tree,
tasks with the gravest need for the processor (lowest virtual runtime) are stored toward the left
side of the tree, and tasks with the least need of the processor (highest virtual runtimes) are
stored toward the right side of the tree.
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Figure 2: Example of a red-black tree
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The scheduler then, to be fair, picks te left most node of the red black tree to schedule next
to maintain fairness. The task accounts for its time with the CPU by adding its execution time
with the CPU by adding its execution time to the virtual runtime and is then inserted back into
the tree if runnable.

3.2 CFS internals

All tasks within Linux are represented by a task structure called task struct. This structure
(along with others associated with it) fully describes the task and includes the task’s current
state, its stack, process flags, priority (both static and dynamic), and much more. But because
not all tasks are runnable, you won’t find any CFS related fields in task struct. Instead, a new
structure called sched entity was created to track scheduling information.

Figure 3: Structure hierarchy for tasks and the red-black tree

The root of the tree is referenced via the rb root element from the cfs rq structrue. Each
node in the red black tree is represented by an rb node, which ontains nothing more than the
child references and the color of the parent. The rb node is contained within the sched entity
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structure, which includes the vruntime, which indicates the amount of time the task has run
and seres as the index for the red black tree. Finally the task struct sits at the top, which fully
describes the task and includes the sched entity structure.

schedule() function in ./kernel/sched.c preempts the currently running task (unless it preempts
itself with yield()). Note that CFS has no real notion of time slices for preemption, becuase the
preemption time is variable. put prev task() function returns the currently running task (now
preempted) to the red black tree. pick next task() function simply picks the left most task from
the red black tree and returns the associated sched entity. With this reference, a simple call to
task of() identifies the task struct reference returned.

3.3 CFS Scheduler

Ideal multi tasking CPU is a CPU that has 100% physical power and which can run each task
at precise equal speed, in parallel, each at 1/nr running speed. On real hardware, we can run
only a single task at once, so we have to introduce the concept of virtual runtime. The virtual
runtime of a task is actual runtime normalized to the total number of running tasks.

In CFS the virtual runtime is expressed and tracked via the per task vruntime (nanosec unit)
value. This way, it’s possible to accurately timestamp and measure the expected CPU time a
task should have gotten. On ideal hardware, at any time all tasks would have the same vruntime
value.

CFS’s task picking logic is based on this vruntime value and it thus very simple: it always
tries to run the task with the smallest vruntime value (the task which executed least so far).
CFS always tries to split up CPU time between runnable tasks as close to ideal multitasking
hardware as possible.

CFS uses a time ordered rbtree to build a timeline of future task execution. CFS also maintains
the rq-¿cfs.min vruntime value, which is a monotonic increasing value tracking the smallest
vruntime among all tasks in the runqueue. The total amount of work done by the system is
tracked using min vruntime; that value is used to place newly activated entities on the left side
of the tree as much as possible.

The total number of running tasks in the runqueue is accounted through the rq-¿cfs.load value,
which is the sum of the weights of the tasks queued on the runqueue. CFS maintains a time
ordered rbtree, where all runnable tasks are sorted by the vruntime key. CFS picks the leftmost
task from this tree and sticks to it. As the system progresses forwards, the executed tasks are
put into the tree more and more to thre right slowly but surely giving a chance for every task to
become the leftmost task and thus get on the CPU within a deterministic amount of time.

3.4 Schedulers: the plot thickens

CFS works with a single red black tree to track all processes which are in a runnable state.
The process which pops up at the leftmost node of the tree is the one which is most entitled to
run at any given time.

So the key to understanding this scheduler is to get a sense for how it caculates the key value
used to insert a process into the tree. When a task goes into the run queue, the current time is
noted. As the process waits for the CPU, the scheduler tracks the amount of processor time it
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would have been entitled to; this entitlement is simply the wait time divided by the number of
running processes (with a correction for different priority values).

The CFS scheduler offers a single tunable: a granularity value which describes how quickly
the scheduler will switch processes in order to maintain fairness. A low granularity gives more
frequent switching; this setting translates to lower latency for interactive responses but can lower
throughput slightly.

There is a relatively small set of methods implemented by each scheduler module, starting
with the queueing functions:

void (*enqueue task) (struct rq *rq, struct task struct *p);

void (*dequeue task) (struct rq *rq, struct task struct *p);

void (*requeue task) (struct rq *rq, struct task struct *p);

When a task enters the runnable state, the core scheduler will hand it to the appropriate
scheduler module with enqueue task(); a task which is no longer runnable is taken out with
dequeue task(). The requeue task() function puts the process behind all others at the same
priority; it is used to implement sched yield().

A few functions exists for helping the scheduler track processes:

void (*task new) (struct rq *rq, struct task struct *p);

void (*task init) (struct rq *rq, struct task struct *p);

void (*task tick) (struct rq *rq, struct task struct *p);

The core scheduler will call task new() when processes are created. task init() initializes any
needed priority calculations and such; it can be called when a process is reniced, for example.
The task tick() function is called from the timer tick to update accounting and possibly switch
to a different process.

When it’s time for the core scheduler to choose a process to ru, it will use these methods:

struct task struct * (*pick next task) (struct rq *rq);

void (*put prev task) (struct rq *rq, struct task struct *p);

The call to pick next task() asks a scehduler module to decide which process (among those in
the class managed by that module) should be running currently. When a task is switched out of
the CPU, the module will be informed with a call to put prev task().

4 Scheduler

CFS in Coffer Presentation (naive)

1. initialize() initializes the scheduler.

2. next thread() picks next thread to run.
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3. push thread() push thread into the scheduler queue.

4. tick() handles periodic event on kernel tick.

5 cfs-complex

CFS in Coffer Presentation (cfs-complex)

5.1 struct ThreadFields

pub struct ThreadFields {

pub se: SchedulerEntity,

}

pub struct SchedulerEntity {

pub max_exectime: AtomicUsize,

pub vruntime: AtomicUsize,

pub waittime: AtomicUsize,

}

impl SchedulerEntity {

pub const fn new() -> Self {

SchedulerEntity {

max_exectime: AtomicUsize::new(0),

vruntime: AtomicUsize::new(0),

waittime: AtomicUsize::new(0),

}

}

}

5.2 struct Cfs

pub struct Cfs {

cfs_rq: [SpinLock<BTreeMap<usize, Thread>>; MAX_CPU],

running: [SpinLock<AtomicCell<Thread>>; MAX_CPU],

waiting: [SpinLock<VecDequeue<Thread>>; MAX_CPU],

}

5.3 initialize()

5.4 next thread()

impl Scheduler for CFS {

fn next_thread(&self) -> Option<Thread> {

core_id = id of current core;

if cfs_rq[core_id] is empty {

return None;
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} else {

t = pop first element from cfs_rq[core_id];

t.se.max_exectime =

(now - t.se.waittime) / length of cfs_rq[core_id];

running[core_id] = t.clone();

return Some(t);

}

}

}

5.5 tick()

impl Scheduler for CFS {

fn tick(&’static self) -> EventHandleResult {

core_id = id of current core;

t = running[core_id];

t.se.vruntime += 1;

t.se.max_exectime -= 1;

if t.se.max_exectime == 0 {

return EventHandleResult::YieldThread;

} else {

pop t from running[core_id] and push t to waiting[core_id];

return EventHandleResult::Ok;

}

}

}

5.6 push thread()

impl Scheduler for CFS {

fn push_thread(&self, t: Thread, _hint: PushHint) {

core_id = id of t’s bounded core;

for waiting_thread in waiting[core_id] {

if t.tid == waiting_thread.tid {

t.se.vruntime = waiting_thread.se.vruntime;

remove waiting_thread from waiting[core_id];

}

}

if t is new thread {

t.se.vruntime = vruntime of cfs_rq[core_id]’s first element;

}

t.se.waittime = now;

insert t to cfs_rq[core_id];
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}

}

5.7 evaluation

Figure 4: Thread Response Time (cfs-complex vs round robin)

Thread response time of cfs-complex is about 8 times longer than thread response time of
round robin. I estimated three reasons for slow thread response time.

The first is the Worst case of the binary search tree. The rr.rs script used to measure thread
response time is a script in which 100 threads add 1 to a specific atomic variable once. Due to
its nature, 100 threads are generated sequentially, so in the current cfs-complex implemented as
a binary search tree rather than a red black tree, a Worst case with a run queue biased to one
side is formed.

The second is initializing time. Currently, there are several unnecessary data structures in the
cfs-complex that do not require ideal cfs schedulers such as running and waiting. It is thought
that it will take a significant time to initialize this.

The third is the non-implementation of load balancing. Due to the nature of CofferOS,
where eight cores run in parallel, the presence or absence of load balancing has a significant
impact on system performance. Currently, load balancing is implemented in the round robin,
and not in the cfs-complex. Considering that the difference in read response time between the
two process scheduling methods is about 8 times, it is presumed that the non-implementation of
load balancing had the greatest impact.
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Figure 5: Thread Turnaround Time (cfs-complex vs round robin)

The turnaround time for cfs-complex is listed in reverse order, unlike the turnaround time for
round robin. This is believed to be a phenomenon due to the difference in the max execution
time allocation method between the two process scheduling methods. For round robin, the max
execution time is fixed at 5 ticks, so any thread on rr.rs is sufficient to add a value to the atomic
variable. However, in the case of cfs-complex, since the max execution time is obtained as (now-
waittime) / len (cfs), the thread that waited longer in the run queue is assigned a longer max
execution time, which is believed to terminate earlier than the first thread executed.

When the three response time and the three turnaround time were combined, the difference
of maximum response time between the two process scheduling methods was 360 ms, and the
difference of maximum turnaround time was 355 ms. Considering that the definition of response
time is first run time-arrival time and the definition of turnaround time is completion time-arrival
time, there was little difference between completion time and first run time, while there was a
big difference between first run and recovery times. Therefore, it is necessary to set a goal in the
future in the direction of reducing the read response time.

At this point, I have set three main objectives as improvements to further develop the cfs-
complex.

First, information related to process scheduling, which was previously managed by Scheduler
Entity, will be wrapped in Arc. Previously, due to Rust’s Ownership, several owners could
not access Schduler Entity, so it was solved by implementing unnecessary data structures such
as running and waiting. However, it will reduce unnecessary data structures and reduce the
initialization time of the process scheduler by wrapping the Scheduler Entity with Arc and
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Figure 6: Thread Response/Turnaround Time (cfs-complex vs round robin)

allowing multiple owners to access it.
Second, max exectime, vruntime, waittime, etc., which were previously managed in tick units,

will be changed to nanosecond units to enable more precise process scheduling.
Third, load balancing will be implemented to eliminate the inefficiency caused by using only

one existing core and increase the simultaneous utilization of the operating system.
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6 cfs-simple

CFS in Coffer Presentation (cfs-simple)

6.1 struct ThreadFields

pub struct ThreadFields {

pub se: Option<Arc<SchedulerEntity>>,

}

pub struct SchedulerEntity {

pub max_exectime: AtomicCell<Duration>,

pub vruntime: AtomicCell<Duration>,

pub exectime: AtomicCell<Instant>,

pub waittime: AtomicCell<Instant>,

}

impl SchedulerEntity {

pub const fn new() -> Self {

SchedulerEntity {

max_exectime: AtomicCell::new(Duration::ZERO),

vruntime: AtomicCell::new(Duration::ZERO),

exectime: AtomicCell::new(Instant::ZERO),

waittime: AtomicCell::new(Instant::ZERO),

}

}

}

6.2 struct Cfs

pub struct Cfs {

cfs_rq: [SpinLock<BTreeMap<Duration, Thread>>; MAX_CPU],

running: [SpinLock<RefCell<Arc<SchedulerEntity>>>; MAX_CPU],

}

6.3 move threads()

impl CFS {

fn move_threads(&self, from: usize, to: usize) {

from_min_vruntime = vruntime of cfs_rq[from]’s first element;

to_min_vruntime = vruntime of cfs_rq[to]’s first element;

relative_vruntime = to_min_vruntime - from_min_vruntime;

from_num_threads = threads number of cfs_rq[from];

to_num_threads = threads number of cfs_rq[to];

num_move_threads =

(from_num_threads + to_num_threads) / 2 - to_num_threads;
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loop num_move_threads times {

t = pop last element from cfs_rq[from];

t.se.vruntime += relative_vruntime;

push t to cfs_rq[to];

}

}

}

6.4 do load balance()

CFS in Coffer Presentation (load balancing)

impl CFS {

fn do_load_balance(&self, core_id: usize) {

loop {

num_threads = threads number of cfs_rq[core_id];

avg_num_threads = average threads number of every cfs_rqs;

load_balance_range = plus minus 10% of avg_num_threads;

if load_balance_range not contains num_threads {

if num_threads > avg_num_threads {

move_threads(core_id, id of idleist core);

} else {

move_threads(id of busiest core, core_id);

}

}

sleep for load_balance_interval milliseconds; (default: 50ms)

}

}

}

6.5 initialize()

impl Scheduler for CFS {

fn initialize(&’static self) {

for core_id in active cores {

spawn thread bounded to core core_id,

executes do_load_balance(core_id);

}

}

}

6.6 next thread()

impl Scheduler for CFS {

fn next_thread(&self) -> Option<Thread> {

core_id = id of current core;
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if cfs_rq[core_id] is empty {

return None;

} else {

t = pop first element from cfs_rq[core_id];

t.se.exectime = now;

t.se.max_exectime =

(now - t.se.waittime) / length of cfs_rq[core_id];

running[core_id] = t.se.clone();

return Some(t);

}

}

}

6.7 tick()

impl Scheduler for CFS {

fn tick(&’static self) -> EventHandleResult {

core_id = id of current core;

se = running[core_id];

executed = now - se.exectime;

to_be_executed = se.max_exectime - executed;

if to_be_executed <= 0 {

se.vruntime += executed;

return EventHandleResult::YieldThread;

} else {

return EventHandleResult::Ok;

}

}

}

6.8 push thread()

impl Scheduler for CFS {

fn push_thread(&self, t: Thread, _hint: PushHint) {

core_id = id of t’s bounded core;

if t is new thread {

t.se.vruntime = vruntime of cfs_rq[core_id]’s first element;

}

t.se.waittime = now;

insert t to cfs_rq[core_id];

}

}
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6.9 evaluation

Figure 7: Thread Response Time (cfs-simple vs round robin)

Thread response time of cfs-simple is about 1.5 times longer than thread response time of
round robin. After solving the initialize time and load balancing non-implementation problems,
it was confirmed that the difference was significantly reduced from 8 to 1.5 times. The worst
case problem of the binary search tree remains a challenge to be solved.

There was no significant difference in the thread turnaround time. However, unlike the thread
turnaround time distribution of round robin, the thread turnaround time distribution of cfs-
simple has a lot of randomness, which is believed to be caused by differences in load balancing
implementation methods.

When the three response time and the three turnaround time were combined, the difference
of maximum response time was reduced from 360 ms to 52 ms, and the difference of maximum
turnaround time was reduced from 355 ms to 59 ms.

Compared to round robin, it has made such a big improvement that no significant difference
occurs, but improvements still remain. It is believed that a process of more sophisticated and
in-depth testing of the current cfs-simple, such as bug resolution, test case fabrication, and red
black tree implementation, will be needed.
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Figure 8: Thread Turnaround Time (cfs-simple vs round robin)

Figure 9: Thread Response/Turnaround Time (cfs-simple vs round robin)
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